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We report a new ab initio study of the acetylene T3 potential energy surface, which clarifies the
nature of its energy minimum, and present computed equilibrium geometries and diabatic
frequencies. This information enables the computation of harmonic vibrational overlap integrals of
T3 vibrational levels with the S1 3�3 state. The results of this calculation support the interpretation
of two local perturbations of S1 3�3, revealed in ultraviolet laser-induced fluorescence/surface
electron ejection by laser excited metastables spectroscopy and Zeeman anticrossing measurements,
respectively, as arising from two rotational submanifolds of a single T3 vibrational state. We present
plausible assignments for this state as a guide for future experimental work. © 2007 American
Institute of Physics. �DOI: 10.1063/1.2730832�

I. INTRODUCTION

The mechanism of intersystem crossing in the acetylene
molecule has attracted considerable experimental and theo-
retical attention for many years. Attention has focused on a

particular vibrational mode of the S1 Ã1 Au electronic state,
the �3 symmetric CCH bending vibration, as a promoter of
coupling to the triplet manifold. Several lines of experimen-
tal evidence reveal a monotonic increase in coupling to trip-
let levels with increasing quanta of �3. One measure of such
coupling is the density of Zeeman anticrossings �ZAC� �de-
scribed further below�, which was found to increase steadily
with �3 until, in 4�3, the anticrossings became too densely
spaced to resolve.1 This increase in coupling to triplets is
much more rapid than the increase in density of triplet vibra-
tional states. Thus it is a matrix element rather than a density
of states effect. But why should the S1�T matrix element
increase rapidly with excitation in S1 �3? This is a vibrational
overlap effect associated with the near-linear turning point of
vibrational levels on the S1 and T3 potential surfaces.

In 1987, Ochi and Tsuchiya2,3 recorded the laser-induced

fluorescence �LIF� spectra of the Ã1Au← X̃1�g
+V0

2K0
1, V0

3K0
1,

and V0
4K0

1 subbands in a molecular beam at moderate
�0.1 cm−1� resolution. �Here V denotes the trans-bend mode,

�4� in the X̃1�g
+ ground electronic state and �3� in the Ã1Au

excited state, and K denotes the projection of total angular

momentum J along the a axis, �� in the X̃ state, and Ka� in the

Ã state. The subscript is the lower state quantum number, and
the superscript is the upper state quantum number; i.e., Vn

m

refers to a transition that connects the m�3� and n�4� vibra-
tional levels.� In the spectra of Ochi and Tsuchiya, an espe-
cially large degree of fractionation was observed in the rota-
tional lines of V0

3K0
1. Quantum beats were also seen in the

fluorescence decay of some of these levels, the frequency
and intensity of which were modified in the presence of mag-

netic fields. These authors proposed both that the Ã1 Au 3�3

level is strongly mixed with a bath of triplet vibrational
states, and that a specific rovibrational level of the T3 state is
likely to play a key role in this coupling. They noted that the
energy minimum of the seam of intersection between S1 and

T3 had been predicted to occur in the energy vicinity of Ã1 Au

3�3 �Refs. 4–6� and at a geometry close to that of the near-
linear turning point of the S1 3�3 level. They also pointed out
that T3 does not possess sufficient vibrational state density at

the energy of Ã1 Au 3�3 to account for the observed degree of
fractionation, and thus hypothesized that the role of T3 is to

mediate the coupling of the Ã1 Au 3�3 level to the bath of T1,2

states—the doorway-mediated coupling hypothesis.
In 1994, Drabbels et al.7 recorded a high resolution

�18 MHz� LIF spectrum of the V0
3K0

1 and V0
4K0

1 subbands.
They observed a background dark-state density on the order
of 10/cm−1, which was approximately consistent with the
expected density of T1 states in this energy region. A later
work8 reconsidered this density of states calculation and
showed the properly symmetry-sorted T1+T2 state density to
be in good agreement with the observed value. On the as-
sumption of a direct singlet-triplet coupling model, Drabbels
et al. used the Lawrance-Knight deconvolution algorithm9 to
extract the zeroth-order energies of the dark states and their
coupling strengths to the bright S1 state.

In addition to laser-induced fluorescence-based measure-
ments, another class of experiments has exploited the mag-
netic properties of the dark triplet states not directly acces-
sible by zero-field techniques. Dupré et al.10 reported ZAC

experiments, exciting the �3=0–3 levels of the Ã1 Au state.
In a ZAC measurement, a single S1 rovibrational level is
excited and the intensity of the resulting fluorescence is
monitored, while the strength of an external magnetic field is
scanned �typically over a range of 0–8 T�. States containing
triplet electronic state character and therefore possessing a
magnetic dipole moment are tuned in energy; when such aa�Electronic mail: rwfield@mit.edu
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state is tuned into degeneracy with the fluorescing bright
state, it mixes appreciable dark-state character into the bright
state, resulting in a decrement to the fluorescence signal �due
mainly to enhanced collisional quenching of the longer-lived
eigenstate�. The resulting anticrossing spectrum gives a pan-
oramic view of the nearby �within up to �7.5 cm−1 for a
maximum field strength of 8 T� triplet spin-rovibronic states
capable of being Zeeman-tuned into resonance with the op-
tically populated S1 level. These acetylene ZAC spectra also
showed a dramatic increase in the number of anticrossings

with increasing excitation of the Ã1 Au �3 mode; but with the
possible exception of a single very broad anticrossing, which
will be reconsidered later in this paper, none of the observed
anticrossings could be assigned to triplet states of definite
vibrational and rotational �Ka ,N� quantum numbers.

Finally, a third type of experiment, surface electron ejec-
tion by laser excited metastables �SEELEM�,11 has been per-
formed. This technique offers direct sensitivity to both triplet
and singlet fractional basis state characters. SEELEM spectra
of the V0

3K0
1 band, recorded simultaneously with UV-LIF

spectra,12 revealed a dense manifold of predominantly
triplet-character eigenstates. Subsequently, various statistical
measures were devised13 to characterize the intensity con-
tours of the SEELEM lines. These statistical measures con-
firmed a doorway mediated as opposed to a direct mecha-
nism of intersystem crossing.

II. ASSIGNED T3ÈS1 PERTURBATIONS

Reference 8 contains the most exhaustive analysis yet
attempted of a simultaneously recorded UV-LIF and
SEELEM data set in the region of the V0

3K0
1 band �around

45 300 cm−1�. The UV-LIF data set displayed a very large
��104� dynamic range of intensity, and numerous assign-
ments of singlet and triplet perturbers of S1 3�3 were made.
One of the key results of that work is the identification of a
rotational series of triplet levels that, as a function of J, tune
through a �J=0, �Ka=0 energy resonance with rotational
levels of 3�3. This “local perturbation” was fitted using an
effective Hamiltonian model, based on the well-known14,15

rotational quantum number dependence of spin-orbit matrix
elements in a Hund’s case-b basis. The rotation-independent
matrix element extracted from this deperturbation was found
to be 0.126 cm−1.

It should be noted that a key observation reported in Ref.
8 must be reinterpreted in light of recent experimental
results.16 Specifically, the lines in Table II assigned to the O
branch of the T3←S0 transition have been shown to termi-
nate on states of insufficiently long lifetimes to be triplets;
moreover, the temperature dependence of their intensities is
suggestive of a singlet-singlet hot band. This in turn casts
doubt on the validity of the T3←S0 Q branch rotational as-
signments, which should be carefully subjected to similar
measurements. In any event, on account of the difficulties in
obtaining unambiguous assignments of the highly congested
Q branch, these transitions were not included in the present
implementation of the deperturbation fit model of Ref. 8, and

so the result for the spin-orbit perturbation matrix element,
obtained from the reliably assigned R- and P-branch transi-
tions, remains unaffected.

In addition to this local perturbation between the T3

doorway state and low-J values of S1 3�3 �K=1�, probably
the strongest isolated singlet-triplet interaction observed to
date in acetylene is a very broad Zeeman anticrossing in
fluorescence from the rotationless �J=K=0� level of the
same S1 vibrational state �3�3�.1,17 From the reported ZAC
spectrum,18 the position of this anticrossing is observed to be
at 7.14 T, with a width of 0.66 T. The corresponding energy
shift is calculated from the magnetic field strength using the
Zeeman relation17

�E = MSg�B�B , �1�

where MS is the electron-spin space-fixed projection quan-
tum number �±1 for a pure triplet, assuming the limit of
Paschen-Back decoupling�, g is the effective g factor
�assumed to equal the approximate “bare-electron” value of
2�, and �B=9.274�10−24 J T−1 is the Bohr magneton. Thus
we find a zero-field S1, T3 energy difference for this anti-
crossing of ��E�=6.67 cm−1. The energy of 3�3 J=K=0 is
45 285.7 cm−1, thus the zeroth-order energy of the triplet
perturber must lie at either 45 279.0 or 45 292.4 cm−1. In the
presence of the magnetic field, the J=0 singlet can mix with
a triplet of either J=1 or 0, implying N=2, 1, or 0, and
therefore a priori K for the triplet could assume any of the
values 2, 1, or 0.

The strength of the singlet-triplet interaction is reflected
in the width of the anticrossing; in the classic analysis of
Wieder and Eck,19 it is shown that an isolated anticrossing in
the “strong coupling” limit �singlet-triplet coupling element
much larger than mean depopulation rates� has a Lorentzian
line shape with a full width half maximum given by

� =
1 + �S/�T

��S/�T�1/2

2VST

MSg�B
, �2�

where �S and �T are the total �radiative plus collisional� de-
population rates of the singlet and triplet states, respectively.
Under the simplifying approximation �S��T, the prefactor
reduces to 2, and the singlet-triplet coupling element is given
by one-fourth of the anticrossing width, converted to units of
energy. Thus the measured width of 0.66 T gives an interac-
tion strength of 0.17 cm−1. This measured coupling matrix
element can be related to the corresponding zero-field matrix
element by the equation20

VST�MNS
� = VST

B=0�e�S,KS,NS;e�T,KT,NT�	2NS + 1

�
 NS 1 NT

− MNS
MST

MNT

� , �3�

where NS=MNS
=0, so that NT=1 is fixed by the triangle rule.

Evaluating the Wigner coefficient with MST
=−MNT

= ±1, we
find that

�VST
B=0� = 	3�VST� = 0.29 cm−1. �4�

Evaluating the formulas given in Table 1 of Ref. 15, under
the assumption that KT=0, we find that the rotational factor

184307-2 Thom et al. J. Chem. Phys. 126, 184307 �2007�

Downloaded 14 May 2007 to 18.95.3.218. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



in the zero-field matrix element is equal to unity, and so the
non-rotating-molecule matrix element is in fact 0.29 cm−1

�under the assumption of KT=1, the result would have to be
multiplied by a factor of 2�.

This is roughly similar in magnitude to the coupling ma-
trix element between S1 3�3 and the K=1 component of the
T3 perturber, extracted from the UV-LIF spectrum. This sug-
gests that these K=0 and 1 S1 3�3�T3 interactions are two
local perturbations by the Ka=0 and 1 rotational submani-
folds of the same T3 vibrational state. The smaller possible
value of the zeroth-order energy falls approximately 21 cm−1

below the energy of S1 3�3; thus it is plausible to assign the
anticrossing triplet perturber as the K=0 component of the
same T3 vibrational level that appears in our UV-LIF spec-
trum, provided that we can show this to be a reasonable K
=0, K=1 energy separation for a vibrational level of the T3

state.
The relationship between the measured two-level T3

�S1 interaction matrix element and the derived nonrotating
molecule vibrational matrix element could be distorted by
unknown factors, such as dilution of S1 3�3 and T3 perturber
characters into the quasicontinuum of T2, T1, and S0 vibra-
tional levels, the diabatization of the T3�T2 interaction, and
the S1 3�3�2�3 �2�Bend� ��Bend=�4+�6� anharmonic plus
a-type Coriolis interactions currently under analysis. Any es-
timate of the uncertainties of the derived matrix element
would be imprudent.

The decisive factor with respect to the likelihood of ad-
ditional T3�S1 vibrational near degeneracies is the magni-
tude of the A-rotational constant, which governs the coarse
rotational spacings between subbands associated with differ-
ent values of K, the magnitude of the projection of rotational
angular momentum along the a �least moment of inertia�
axis. It would be helpful to have a grasp of the dependence
of this quantity on the T3 vibrational quantum numbers, in
order to gauge the rotational spacings of the T3 excited vi-
brational levels. In particular, we expect that A� will be al-
tered in a complicated manner by excitation of the symmetric
CCH bending and torsional modes �as well as by a-type
Coriolis interactions�.

III. VIBRATIONAL ASSIGNMENT

A. New ab initio determination of the diabatic
T3 minimum

Both the ZAC measurement, on the one hand, and the
deperturbation model used to interpret the UV-LIF/SEELEM
data set, on the other, provide estimates of spin-orbit matrix
elements between S1 and T3 perturbers. To an excellent ap-
proximation, this matrix element factors into the product of a
purely electronic matrix element of the spin-orbit operator
and a vibrational overlap integral. The latter can be estimated
if something is known about the equilibrium structures and
the force fields near the equilibrium geometry of the respec-
tive electronic states. The equilibrium geometry and force
field can be computed by ab initio methods. Precisely such a
calculation has already been carried out for T3 acetylene by
Cui and Morokuma,6 who computed HSO between S1 and T3

at several nuclear configurations. At the minimum of the

seam of intersection in C2 symmetry between the S1 and
T3 surfaces, this matrix element �i.e., ����S=0,MS

=0��HSO���S=1,MS=1�� is 13.7 cm−1. This in turn implies
a vibrational overlap integral for the T3 perturber of
0.126/13.7=0.01.

This raises two questions: Can we compute a vibrational
overlap of this magnitude with S1 3�3 for any low-lying vi-
brational level of T3? Do the overlaps computed for the
lowest-lying levels show any diagnostic trends with vibra-
tional quantum numbers that might aid in proposing or at
least narrowing down the vibrational assignment possibilities
for the T3 perturber? To answer these questions, we must
examine the complicated T3 potential energy surface in more
detail.

Ab initio electronic structure calculations have been slow
in arriving at a consensus regarding the location and nature
of the minimum of the T3 potential energy surface. Cui and
Morokuma6 were only able to locate a transition state �saddle
point�, with one imaginary normal mode frequency along an
antisymmetric CCH bending coordinate. More recently, Ven-
tura et al.21 performed extended multireference electron cor-
relation calculations on all four of the lowest-lying acetylene
triplet potential energy surfaces. These authors were able to
find a genuine minimum �no imaginary frequencies� belong-
ing to the T3 surface and described its equilibrium structure,
although they provided no normal mode vibrational frequen-
cies or eigenvectors. Ventura et al. describe two seams of
T2�T3 conical intersections that lie very close to the pre-
dicted T3 stationary point. This complicated topography ac-
counts for the difficulties encountered in locating stationary
points.

In order to shed light on the nature of the T3 potential
energy surface, with a view of producing an accurate esti-
mate of this crucial vibrational overlap integral, we have
carried out new ab initio calculations. To treat the interac-
tions between T2 and T3, we employ a simple diabatic model
in which the T3 and T2 electronic states are coupled by the
two nontotally symmetric modes, �5 �antisymmetric CCH
stretch� and �6 �antisymmetric CCH bend�. To estimate the
adiabatic couplings, we write the diabatic electronic Hamil-
tonian matrix U in the basis spanned by 	1 and 	2, which are
the diabatic wave functions associated with T3 and T2, re-
spectively. Within the harmonic approximation, the diabatic
potential energy curves U11 and U22 expressed in the dimen-
sionless normal coordinates q= �
 /��1/2Q are given by

U11 = �	1�U�	1 = 1
2
5q5

2 + 1
2
6q6

2, �5�

U22 = �	2�U�	2 = 1
2
5q5

2 + 1
2
6q6

2 + � , �6�

where � is the vertical excitation energy between the T3 and
T2 states at the reference C2 saddle point on the T3 surface.
In Eqs. �5� and �6� we have assumed that modes �5 and �6

have the same frequencies �
5 and 
6, respectively� in the T3

and T2 diabatic states.22,23 Since the two states are diabatic,
they are coupled by the adiabatic vibronic coupling operator
U12 which can be expanded in a Taylor series in q5 and
q6,24–26
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U12 = U21 = �	1�U�	2 = �5q5 + �6q6 + �5�q5
3 + �6�q6

3 + ¯

� �5q5 + �6q6, �7�

where we retain only the linear terms in q5 and q6 in Eq. �7�.
To make contact with properties obtained from quantum

chemistry codes, we must switch to the adiabatic representa-
tion. The two-dimensional adiabatic potential surfaces
E+�q5 ;q6� and E−�q5 ;q6� are obtained by diagonalization of
the diabatic electronic Hamiltonian matrix


U11 U12

U21 U22
�

= 
�1/2�
5q5
2 + �1/2�
6q6

2 �5q5 + �6q6

�5q5 + �6q6 �1/2�
5q5
2 + �1/2�
6q6

2 + �
� .

�8�

The two roots of this Hamiltonian, which represent the adia-
batic energy curves, are

E±�q5,q6� =
1

2
�
5q5

2 + 
6q6
2 + ��

±
�

2
�1 +

4��5q5 + �6q6�2

�2 �1/2

, �9�

where E+ and E− are the adiabatic potential energy surfaces
of the T2 and T3 states, respectively. Therefore, the second
derivative of each of these roots yields the adiabatic har-
monic frequencies 5

± and 6
±

5
± = � �2E±�q5,q6�

�q5
2 �

q5=q6=0

= 
5 ±
2�5

2

�
, �10�

6
± = � �2E±�q5,q6�

�q6
2 �

q5=q6=0

= 
6 ±
2�6

2

�
. �11�

Using Eqs. �10� and �11�, the diabatic frequencies 
5 and 
6

are given by


5 =
5

+ + 5
−

2
, �12�


6 =
6

+ + 6
−

2
, �13�

and the adiabatic vibronic coupling coefficients are then
given by

��5� =
���5

+ − 5
−��1/2

2
, �14�

��6� =
���6

+ − 6
−��1/2

2
. �15�

To utilize this diabatic model one must calculate, using quan-
tum chemistry methods, the following adiabatic quantities:
�, 5

±, and 6
±. We employed the equation of motion coupled

cluster with singles and doubles �EOM-CCSD� method for
all geometry optimizations and harmonic frequency calcula-
tions. The correlation-consistent basis sets of Kendall et al.27

denoted by cc-pVXZ, where X stands for D �double�, T
�triple�, or Q �quadruple� zeta quality, were used. All EOM-
CCSD calculations were performed using the ACES II set of
programs28 with analytic gradients for both geometry and
harmonic frequency calculations.

The geometries for the C2 saddle point on the T3 surface
are collected in Table I, with previous results from the litera-
ture for comparison. A general decrease in bond lengths and
increase in bond angles is observed with larger basis set size.
However, when the basis set increases from cc-pVTZ to cc-
pVQZ, the difference in geometry is relatively small within
the EOM-CCSD approach. The pVQZ results of Table I
agree well with the MR-AQCC �TQ�-extrapolated values
from Ventura et al.21

B. Harmonic overlap integrals

The computed parameters for the adiabatic vibronic cou-
plings between T3 and T2 were obtained using Eqs. �14� and
�15� and are listed in Table II. The diabatic frequencies of T3,

5, and 
6 �rescaled to conventional mass-weighted normal
coordinates� are also listed. Within all basis sets, the �6

mode, which corresponds to the antisymmetric CCH bend,
provides the stronger coupling between T3 and T2.

Now the harmonic frequencies and force constants about
the “diabatized” T3 minimum can be used to compute vibra-
tional overlap integrals with S1 3�3. In order to minimize the
error of this calculation, we have also recomputed harmonic
frequencies and force constants for S1. Tables III and IV list
the normal modes and calculated frequencies for S1 and T3,
respectively. The calculation also establishes an electronic
energy separation �Te�S1�−Te�T3�� of 0.001 2211 hartree
=270 cm−1.

The vibrational overlap integrals are straightforwardly
calculated within the harmonic oscillator approximation us-
ing the multidimensional generating function formalism de-
veloped by Sharp and Rosenstock31 and extended by several
other authors.32,33 The required inputs are the respective nor-

TABLE I. Computed structures at the diabatic T3 minimum.

pVDZ pVTZ pVQZ Ventura et al.a

rCC �Å� 1.381 1.349 1.347 1.352
RCH �Å� 1.101 1.075 1.077 1.079
�CCH �°� 132.6 137.4 137.3 138.7
�HCCH �°� 104.7 104.6 104.5 106.1

aReference 21.

TABLE II. Ab initio adiabatic coupling parameters.

pVDZ pVTZ pVQZ

� �eV� 0.0461 0.0296 0.0281
��5� �eV� 0.0308 0.0226 0.0220
��6� �eV� 1.101 1.075 1.024

5 �cm−1� 2965.0 3041.7 3036.5

6 �cm−1� 474.6 370.4 397.6
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mal mode frequencies and L matrices, which contain the
normal mode eigenvectors expanded in a basis of internal
stretch and bend angle coordinates.34

Table V lists the T3 vibrational states, the harmonic en-
ergies of which are predicted to fall within approximately
100 cm−1 of S1 3�3, along with their calculated overlaps with
S1 3�3.

C. A-rotational constants

We are now in a position to make some quantitative
predictions concerning the vibrationally averaged �diabatic�
A-rotational constants discussed earlier. A straightforward
calculation determines Ae �the value of A corresponding to
our computed equilibrium geometry� as 19.95 cm−1, consid-
erably larger than the value observed for vibrational levels of
S1 �typically �14–15 cm−1�. As is the case for S1, the
a-inertial axis is tilted away from the C–C bond axis by a
slight angle ��6° �. The increase in A0 for T3 is explained
largely by the significantly wider �i.e., less bent� CCH bond
angle at the T3 minimum, which brings the structure closer to
linearity and consequently reduces the a-axis moment of in-
ertia. In order to estimate the vibrational dependence of the
A-rotational constant for T3, we make use of the results of a
second-order perturbative treatment, by which one can cal-
culate the vibration-rotation interaction constants �, defined
by the power series

A� = Ae − �
r

�r
A��r + 1/2� + ¯ . �16�

The result for �r
A in the harmonic limit is35

− �r
A =

2A0
2


r
��

�

3�ar
A��2

4I�,�
+ �

s�r

��r,s
� �2 �3
r

2 + 
s
2�


r
2 − 
s

2 � , �17�

where

ar
�� = 
 �I��

�Qr
�

e
= �

�,�,�
2���������

i

mi
1/2ri�li�,r, �18�

and the constants denoted �r,s
� are the Coriolis coefficients

that define the components of vibrational angular momentum
in terms of the normal coordinates and their conjugate mo-
menta,

�� = �
r,s

�r,s
� QrPs. �19�

They are listed in Table VI can be calculated directly from
the l-matrix components as follows:

�r,s
� = �

�,�,i
����l�i,rl�i,s. �20�

In Eq. �17� above, the first term represents contributions in
first-order perturbation theory from the quadratic dependence
of the � tensor, and therefore also of the rotational constant
operator, on the normal coordinates. The second term repre-
sents the second-order contributions of Coriolis interactions
diagonal in J, but which exchange two quanta of nonidenti-
cal normal modes. Both classes of terms contribute to the
energy a term proportional to ��+1/2�K2, and therefore, a
term to the rotational constant linear in ��+1/2�.

Carrying out the calculation using the parameters de-
rived from our ab initio normal mode analysis for T3 acety-
lene, we find � coefficients as given in Table VII. We thus
see that the most pronounced effects on A� are observed in
levels involving the �4 symmetric bending and �6 antisym-
metric bending modes: excitation of �4 results in a dramatic
decrease in A �due primarily to inertia-tensor dependence�,
while excitation of �6 dramatically increases A �due pre-
dominantly to Coriolis interactions�. Zero-point vibrations
result in a value of A0=18.91 cm−1. Finally, it should of
course be noted that for a given vibrational level, the ob-
served same-J K=0, K=1 energy separation will in fact be
Aeff=A�− �B�+C�� /2�A�−1 cm−1.

Examining Table V, we find three T3 vibrational states
lying between 38 and 111 cm−1 from S1 3�3 with an appro-
priate vibrational overlap ��0.01� with the observed triplet
perturber. Of all the computed quantities, we expect the en-
ergy to be the least accurate, owing both to error in the
frequencies and to neglected anharmonicity. The overlap in-

TABLE V. T3 vibrational levels predicted to lie in the vicinity of S1 3�3.
Five of the overlap integrals are rigorously zero by symmetry.

Vibrational level E−E�3�3� �cm−1� �� �S13�3 A� �cm−1�

�2+2�4+�6 −108 0 24.62
�3+3�4 −68 0.12 28.82
�3+5�6 −39 0 11.25
4�4+2�6 −32 −0.062 26.86
�5+�6 −5 −0.0037 19.19
�4+7�6 −3 0 9.29
�2+�3+�6 −3 0 20.05
�2+�4+3�6 +34 0 18.09
2�3+�4 +38 0.015 24.25
�3+2�4+2�6 +74 0.011 22.29
3�4+4�6 +110 0.017 20.33

TABLE III. Computed and experimental S1 vibrational frequencies.

Mode Predominant character Calc. �cm−1� Expt. �cm−1�a

�1 �ag� Symmetric CH stretch 3113.8 3004
�2 �ag� CC stretch 1504.0 1420
�3 �ag� Symmetric CCH bend 1087.3 1064
�4 �au� Out-of-plane torsion 641.5 765
�5 �bu� Antisymmetric CH stretch 3091.4 2914
�6 �bu� Antisymmetric CCH bend 732.4 785

aReferences 29 and 30.

TABLE IV. Computed diabatic T3 vibrational frequencies.

Mode Predominant character Calc. �cm−1�

�1 �a� Symmetric CH stretch 3225.88
�2 �a� Torsion 1626.90
�3 �a� CC stretch 1411.96
�4 �a� Symmetric CCH bend 653.04
�5 �b� Antisymmetric CH stretch 3036.48
�6 �b� Antisymmetric CCH bend 397.56
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tegrals, by contrast, are expected to be much less sensitive to
uncertainty in the computed frequencies. It is seen that the
state 2�3+�4, with a reasonable A� value of 24.45 cm−1, is
predicted to lie only 38.0 cm−1 higher in energy than S1 3�3.
A still higher-energy state at 110.4 cm−1 from 3�3, 3�4

+4�6, is predicted to possess an A� value closest to that re-
quired for the observed simultaneous perturbation of S1 3�3

K=0 and K=1. We thus tentatively propose these two vibra-
tional levels as leading candidates for the assignment of the
twice-sampled �in K=0 and 1� T3 perturber.

IV. ADDITIONAL T3ÈS1 NEAR DEGENERACIES

The calculation described in this work establishes a the-
oretical value for the energy of the T3 zero-point vibrational
level of 41 860 cm−1. There are therefore, in this approxi-
mately 3500 cm−1-wide energy region below S1 3�3, many
T3 vibrational levels capable of interacting, perhaps strongly,
with 3�3 or with another S1 vibrational level. Indeed, Table V
lists one T3 level, �3+3�4, which, although lying roughly
100 cm−1 in energy from our preferred candidate for the T3

perturber, is predicted to interact with it an order of magni-
tude more strongly. Thus this level could experience enough
mixing with S1 to be appreciably illuminated. Careful exami-
nation of this region by UV-LIF/SEELEM spectroscopy
would be worthwhile. Within an energy region ±300 cm−1

near each S1 vibrational level, there is likely to be a T3 vi-
brational level with vibrational overlap �0.1, hence spin-
orbit matrix element �1 cm−1.

V. CONCLUSION

We have undertaken a new ab initio characterization of
the acetylene T3 potential energy surface in the vicinity of its
stationary point. After accounting for the adiabatic interac-
tions with the T2 surface, harmonic frequencies and force
constants about the diabatic T3 minimum have been ob-
tained, which enable the calculation of harmonic vibrational
overlap integrals with the 3�3 vibrational level of S1 for the
entire manifold of low-lying T3 vibrational states. On the
basis of these quantities, a small number of T3 states that lie
in the energetic region of S1 3�3 has been found to possess
overlaps of the correct magnitude for the triplet perturber of

this level. Two of these, the 2�3+3�4 and 3�4+4�6 levels,
are predicted to possess a coarse rotational structure consis-
tent with the observed perturbations of S1 3�3 at both K=0
and 1, unifying UV-LIF/SEELEM measurements with a
much earlier Zeeman anticrossing observation. Experiments
are in progress to locate additional T3 levels with the goal of
adding a few more experimental calibrations of the T3 diaba-
tic potential energy surface and S1�T3 and T3�T1,2 spin-
orbit coupling strengths.

ACKNOWLEDGMENT

This work has been supported by the Air Force Office of
Scientific Research �Grant No. AFOSR-FA9550-05-1-0077�.

1 P. Dupré, R. Jost, M. Lombardi, P. G. Green, E. Abramson, and R. W.
Field, Chem. Phys. 152, 293 �1991�.

2 N. Ochi and S. Tsuchiya, Chem. Phys. Lett. 140, 20 �1987�.
3 N. Ochi and S. Tsuchiya, Chem. Phys. 152, 319 �1991�.
4 H. Lischka and A. Karpfen, Chem. Phys. 102, 77 �1986�.
5 Q. Cui, K. Morokuma, and J. F. Stanton, Chem. Phys. Lett. 263, 46
�1996�.

6 Q. Cui and K. Morokuma, Chem. Phys. Lett. 272, 319 �1997�.
7 M. Drabbels, J. Heinz, and W. L. Meerts, J. Chem. Phys. 100, 165
�1994�.

8 A. P. Mishra, R. L. Thom, and R. W. Field, J. Mol. Spectrosc. 228, 565
�2004�.

9 W. D. Lawrance and A. E. W. Knight, J. Chem. Phys. 89, 917 �1985�.
10 P. Dupré, P. G. Green, and R. W. Field, Chem. Phys. 196, 211 �1995�.
11 O. Sneh and O. Cheshnovsky, Chem. Phys. Lett. 130, 53 �1986�.
12 S. J. Humphrey, C. G. Morgan, A. M. Wodtke, and K. L. Cunningham, J.

Chem. Phys. 107, 49 �1997�.
13 S. Altunata, Ph.D. thesis, Massachusetts Institute of Technology, 2001.
14 C. G. Stevens and J. C. D. Brand, J. Chem. Phys. 58, 3324 �1973�.
15 J. C. D. Brand and C. G. Stevens, J. Chem. Phys. 58, 3331 �1973�.
16 Hans A. Bechtel and Adam H. Steeves �unpublished experimental re-

sults�.
17 P. G. Green, Ph.D. thesis, Massachusetts Institute of Technology, 1989.
18 P. Dupré and P. G. Green, Chem. Phys. 212, 555 �1993�.
19 H. Wieder and T. G. Eck, Phys. Rev. 153, 103 �1967�.
20 M. Lombardi, Excited States: Rotational Effects on the Behavior of Ex-

cited Molecules �Academic, New York, 1988�, Vol. 7.
21 E. Ventura, M. Dallos, and H. Lischka, J. Chem. Phys. 118, 1702 �2003�.
22 G. Orlandi and F. Zerbetto, J. Chem. Phys. 91, 4238 �1987�.
23 G. Orlandi, F. Zerbetto, and M. Z. Zgierski, Chem. Rev. �Washington,

D.C.� 91, 867 �1991�.
24 H. C. Longuet-Higgins, Adv. Spectrosc. �N.Y.� 2, 42 �1961�.
25 R. L. Fulton and M. Gouterman, J. Chem. Phys. 35, 1059 �1961�.
26 W. H. Henneker, A. P. Penner, W. Siebrand, and M. Z. Zgierski, J. Chem.

Phys. 69, 1884 �1978�.
27 R. A. Kendall, T. H. Dunning, Jr., and R. J. Harrison, J. Chem. Phys. 96,

6796 �1992�.
28 J. F. Stanton, J. Gauss, J. D. Watts, P. G. Szalay, and R. J. Bartlett, ACES2,

Mainz-Austin-Budapest Version, a quantum-chemical program package
for high-level calculations of energies and properties; see http://
www.aces2.de

29 A. J. Merer, N. Yamakita, S. Tsuchiya, J. F. Stanton, Z. Duan, and R. W.

TABLE VI. Numerical a-axis Coriolis coefficients for T3, calculated from an ab initio normal mode analysis.

�1 �2 �3 �4 �5 �6

�1 0
�2 0 0
�3 0 0 0
�4 0 0 0 0
�5 0.0093 0.3776 −0.2387 0.0241 0
�6 0.0288 −0.7470 0.4913 −0.0166 0 0

TABLE VII. Calculated a-axis vibration-rotation interaction coefficients for
T3.

�1 �2 �3 �4 �5 �6

Eq. �17� −0.25 −0.71 −0.40 −2.49 −0.25 +2.03

184307-6 Thom et al. J. Chem. Phys. 126, 184307 �2007�

Downloaded 14 May 2007 to 18.95.3.218. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Field, Mol. Phys. 101, 663 �2003�.
30 J. D. Tobiason, A. L. Utz, E. L. Sibert III, and F. F. Crim., J. Chem. Phys.

99, 5762 �1993�.
31 T. E. Sharp and H. M. Rosenstock, J. Chem. Phys. 41, 3453 �1964�.
32 P. T. Ruhoff and M. A. Ratner, Int. J. Quantum Chem. 77, 383 �2000�.

33 A. Toniolo and M. Persico, Int. J. Quantum Chem. 22, 969 �2001�.
34 E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular Vibrations: The

Theory of Infrared and Raman Spectra �McGraw-Hill, New York, 1955�.
35 I. M. Mills, Molecular Spectroscopy: Modern Research �Academic, New

York, 1972�.

184307-7 Intersystem crossing in acetylene J. Chem. Phys. 126, 184307 �2007�

Downloaded 14 May 2007 to 18.95.3.218. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


